Autoparts-remix.ru

Автомобильный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

В чем измеряется коэффициент внутреннего трения

Лабораторная работа №11

ОПРЕДЕЛЕНИЕ коэффициента вязкости (внутреннего трения) жидкости методом Стокса

Фамилия И.О. _________________ Группа __________ Дата ______

Введение

Вязкость (внутренне трение) обуславливается силой трения, возникающей при относительном смещении слоев жидкости. Вязкость жидкости характеризуется коэффициентом вязкости. Эта величина определяет свойства жидкости и связывает силу внутреннего трения в жидкости со скоростью ее частиц.

Физический смысл коэффициента вязкости можно выяснить из следующих соображений. При установившемся потоке жидкости в трубе различные слои движущейся жидкости имеют различные скорости. Наибольшую скорость имеет слой, текущий по центральной части трубы. Слой, непосредственно прилегающий к стенкам трубы, благодаря прилипанию частичек жидкости к стенкам трубы, имеет скорость . Поэтому распределение скорости текущей жидкости по трубе определяется величиной (градиент скорости), которая показывает изменение скорости на единицу длины радиуса трубы. Согласно закону Ньютона, сила внутреннего трения между слоями определяется формулой:

где η – коэффициент вязкости;

— градиент скорости;

S – площадь поверхности, к которой приложена сила.

Из этой формулы следует:

Если предположить, что S равняется единице поверхности и градиент скорости равен единице, то η = F , то есть коэффициент вязкости численно равен силе внутреннего трения между слоями, действующей на единицу поверхности при градиенте скорости равном единице.

В системе СИ коэффициент вязкости измеряется в Ньютон секундах на квадратный метр и имеет размерность

Основными методами измерения коэффициента вязкости являются метод истечения жидкости из капилляра, разработанный Пуазейлем и метод падения шарика, разработанный Стоксом.

В настоящей работе описывается метод Стокса. Маленький шарик, изготовленный из материала, плотность которого больше плотности исследуемой жидкости, опускается в исследуемую жидкость, находящуюся в длинной трубке. На движущейся шарик действуют три силы:

где r – радиус шарика;

ρ – плотность материала шарика;

g – ускорение силы тяжести ( ).

2. Сила Архимеда, направленная против движения шарика:

здесь ρ1 – плотность вязкой жидкости.

3. Сила внутреннего трения (сила сопротивления движения шарика). Эта сила также направлена против движения шарика. Стокс на основании теоретических исследований установил, что если шарик движется в жидкости, не вызывая при своем движении никаких завихрений, то сила сопротивления движения шарика определяется формулой

где — скорость падения шарика, r – радиус шарика, η – коэффициент вязкости жидкости.

Следует учесть, что при движении шарика имеет место не трение шарика о жидкость, а трение отдельных слоев жидкости друг о друга, так как шарик обволакивается тонким слоем жидкости, и этот слой жидкости движется вместе с шариком.

Сила трения с увеличением скорости движения шарика возрастает, следовательно, при движении шарика скорость его может достигнуть такой величины, при которой все три силы, действующие на шарик, будут уравновешены, то есть равнодействующая их будет равна нулю. Такое движение шарика будет равномерным, и шарик будет двигаться по инерции с постоянной скоростью. Уравнение динамики для такого движения будет:

При движении шарика в цилиндрическом сосуде с радиусом R и высотой h учет на личия стенок, дна сосуда и верхней поверхности приводит к следующему выражению для коэффициента вязкости, установленному теоретически

здесь R – радиус цилиндра, h – высота жидкости.

Для шариков малых радиусов 1-2 мм и трубок достаточно большого диаметра малая величина. Ею можно в наших расчетах пренебречь и расчеты вести по формуле (53).

Следует помнить, что коэффициент вязкости зависит от температуры. При повышении температуры коэффициент вязкости уменьшается. Поэтому при определении коэффициента вязкости следует указать температуру.

Порядок выполнения работы

1. Получив у лаборанта микрометр и несколько стальных и чугунных шариков, определить диаметры шариков при помощи микрометра с точностью до 0,01 мм. Плотность стали принять равной , плотность свинца — , плотность масла —

2. Температуру считать равной комнатной температуре.

3. Измерить расстояние между метками на трубке, в которой должен двигаться шарик.

4. Секундомером определить время прохождения шариком расстояния между красными линиями ab (рис.22).

Глаз следует поместить так, чтобы отсутствовала ошибка на параллакс. Опыт повторяют с двумя-тремя шариками.

5. Скорость определяется из соотношения

6. Данные опыта подставить в формулу (53).

7. Для каждого шарика отдельно измеряют время падения и рассчитывают коэффициент вязкости. Затем определяют

8. Найти относительную и абсолютную ошибки измерения.

Определение коэффициента вязкости прозрачной жидкости по методу Стокса

Главная > Лабораторная работа >Физика

Лабораторная работа № 2

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ПРОЗРАЧНОЙ ЖИДКОСТИ ПО МЕТОДУ СТОКСА

Цель работы: ознакомиться с методом определения коэффициента вязкости прозрачной жидкости методом движущегося в жидкости шарика.

Оборудование: стеклянный цилиндр, с прозрачной жидкостью; секундомер; микрометр; масштабная линейка; шарики из свинца.

Теория вопроса и метод выполнения работы

Явления переноса объединяют группу процессов, связанных с неоднородностями плотности, температуры или скорости упорядоченного перемещения отдельных слоев вещества. К явлениям переноса относятся диффузия, внутреннее трение и теплопроводность.

Явлением внутреннего трения (вязкости) называется появление сил трения между слоями газа или жидкости, движущимся, друг относительно друга, параллельно и с разными по величине скоростями. Слой, движущийся быстрее, действует с ускоряющей силой на более медленно движущийся соседний слой. Силы внутреннего трения, которые возникают при этом, направлены по касательной к поверхности соприкосновения слоев (рис. 1, 2).

Величина силы внутреннего трения между соседними слоями пропорциональна их площади и градиенту скорости , то есть справедливо соотношение, полученное экспериментально Ньютоном

Величина называется коэффициентом внутреннего трения или динамическим коэффициентом вязкости. В СИ измеряется в .

Читать еще:  В салоне авто пахнет выхлопными газами

Входящая в (1) величина показывает, как меняется скорость жидкости в пространстве при перемещении точки наблюдения в направлении, перпендикулярном слоям. Понятие градиента скорости иллюстрируется рис. 1, 2.

Рис. 1. Постоянный градиент скорости

На рисунке 1 показано распределение скоростей слоев жидкости между двумя параллельными пластинами, одна из которых неподвижна, а другая имеет скорость . Подобная ситуация возникает в прослойке смазки между движущимися деталями. В этом случае слои жидкости, непосредственно прилегающие к каждой из пластин, имеют одинаковую с ней скорость. Движущиеся слои частично увлекают за собой соседние. В результате в пространстве между пластинами скорость жидкости меняется по направлению равномерно. Таким образом, здесь

Рис. 2. Переменный градиент скорости

На рисунке 2 показано распределение скоростей жидкости около движущегося в ней вертикально вниз со скоростью шарика.

Предполагается, что скорость мала, так что завихрения в жидкости не образуются. В этом случае жидкость, непосредственно прилегающая к поверхности шарика, имеет скорость . В это движение частично вовлекаются удаленные от шарика слои жидкости. При этом скорость наиболее быстро меняется по направлению вблизи шарика.

Наличие градиента скорости у поверхности тела указывает, что на него действует сила внутреннего трения, зависящая от коэффициента вязкости . Сама величина определяется природой жидкости и обычно существенно зависит от ее температуры.

Сила внутреннего трения и коэффициент вязкости жидкости может быть определен различными методами – по скорости истечения жидкости через калиброванное отверстие, по скорости движения тела в жидкости и т.д. В данной работе для определения используется метод, предложенный Стоксом.

Рассмотрим для примера равномерное движение маленького шарика радиуса в жидкости. Обозначим скорость шарика относительно жидкости через . Распределение скоростей в соседних слоях жидкости, увлекаемых шариком, должно иметь вид, изображенный на рис. 2. В непосредственной близости к поверхности шара эта скорость равна , а по мере удаления уменьшается и практически становится равной нулю на некотором расстоянии от поверхности шара.

Очевидно, чем больше радиус шара, тем большая масса жидкости вовлекается им в движение, и должно быть пропорционально радиусу шарика : . Тогда среднее значение градиента скорости на поверхности шара равно

Поверхность шара , и полная сила трения, испытываемая движущимся шаром, равна

Более подробные расчеты показывают, что для шара , окончательно – формула Стокса.

По формуле Стокса можно, например, определить скорости оседания частиц тумана и дыма. Ею можно пользоваться и для решения обратной задачи – измеряя скорость падения шарика в жидкости, можно определить ее вязкость.

Упавший в жидкость шарик движется равноускоренно, но, по мере того, как растет его скорость, будет возрастать и сила сопротивления жидкости до тех пор, пока сила тяжести шарика в жидкости не сравняется с суммой силы сопротивления и силы трения жидкости движению шарика. После этого движение будет происходить с постоянной скоростью .

При движении шарика слой жидкости, граничащий с его поверхностью, прилипает к шарику и движется со скоростью шарика. Ближайшие смежные слои жидкости также приводятся в движение, но получаемая ими скорость тем меньше, чем дальше они находятся от шарика. Таким образом, при вычислении сопротивления среды следует учитывать трение отдельных слоев жидкости друг о друга, а не трение шарика о жидкость.

Если шарик падает в жидкости, простирающейся безгранично по всем направлениям , не оставляя за собой никаких завихрений (малая скорость падения, маленький шарик), то, как показал Стокс, сила сопротивления равна

где – коэффициент внутреннего трения жидкости; – скорость шарика; – его радиус.

Кроме силы на шарик действует сила тяжести и архимедова сила , равная весу вытесненной шариком жидкости. Для шара

где , – плотность материала шарика и исследуемой жидкости.

Все три силы будут направлены по вертикали: сила тяжести – вниз, подъемная сила и сила сопротивления – вверх. Первое время, после вхождения в жидкость, шарик движется ускоренно. Считая, что к моменту прохождения шариком верхней метки скорость его уже установилась, получим

где – время прохождения шариком расстояния между метками, – расстояние между метками.

Движения шарика возрастает, ускорение уменьшается и, наконец, шарик достигнет такой скорости, при которой ускорение становится равным нулю, тогда

Подставляя в равенство (4) значение величин, получим:

Решая уравнение (5) относительно коэффициента внутреннего трения, получаем расчетную формулу:

Рис. 3. Прибор Стокса

На рисунке 3 представлен прибор, состоящий из широкого стеклянного цилиндра с нанесенными на него двумя кольцевыми горизонтальными метками и ( – расстояние между метками), который наполняется исследуемой жидкостью (касторовое масло, трансформаторное масло, глицерин) так, чтобы уровень жидкости был на 58 см выше верхней метки.

Порядок выполнения работы

Для измерения коэффициента внутреннего трения жидкости, например, масла, берутся очень маленькие шарики. Диаметр этих шариков измеряют микрометром. Время падения шарика – секундомером.

С помощью микрометра измерьте диаметр шарика.

Измерьте время опускания каждого шарика между двумя метками и . Шарик опустите в отверстие воронки и в момент прохождения через верхнюю метку включите секундомер, а в момент прохождения через нижнюю метку его выключите.

Проведите опыт не менее пяти раз.

Измерьте расстояние между метками. Вычислите скорость движения шарика и по формуле (5) найдите значение коэффициента вязкости.

Плотность жидкости и шариков возьмите из таблицы физических величин.

Найдите среднее значение коэффициента вязкости, оценить абсолютную и относительную погрешности измерений.

Читать еще:  Гальваническая очистка от ржавчины

Лабораторная работа №11

ОПРЕДЕЛЕНИЕ коэффициента вязкости (внутреннего трения) жидкости методом Стокса

Фамилия И.О. _________________ Группа __________ Дата ______

Введение

Вязкость (внутренне трение) обуславливается силой трения, возникающей при относительном смещении слоев жидкости. Вязкость жидкости характеризуется коэффициентом вязкости. Эта величина определяет свойства жидкости и связывает силу внутреннего трения в жидкости со скоростью ее частиц.

Физический смысл коэффициента вязкости можно выяснить из следующих соображений. При установившемся потоке жидкости в трубе различные слои движущейся жидкости имеют различные скорости. Наибольшую скорость имеет слой, текущий по центральной части трубы. Слой, непосредственно прилегающий к стенкам трубы, благодаря прилипанию частичек жидкости к стенкам трубы, имеет скорость . Поэтому распределение скорости текущей жидкости по трубе определяется величиной (градиент скорости), которая показывает изменение скорости на единицу длины радиуса трубы. Согласно закону Ньютона, сила внутреннего трения между слоями определяется формулой:

где η – коэффициент вязкости;

— градиент скорости;

S – площадь поверхности, к которой приложена сила.

Из этой формулы следует:

Если предположить, что S равняется единице поверхности и градиент скорости равен единице, то η = F , то есть коэффициент вязкости численно равен силе внутреннего трения между слоями, действующей на единицу поверхности при градиенте скорости равном единице.

В системе СИ коэффициент вязкости измеряется в Ньютон секундах на квадратный метр и имеет размерность

Основными методами измерения коэффициента вязкости являются метод истечения жидкости из капилляра, разработанный Пуазейлем и метод падения шарика, разработанный Стоксом.

В настоящей работе описывается метод Стокса. Маленький шарик, изготовленный из материала, плотность которого больше плотности исследуемой жидкости, опускается в исследуемую жидкость, находящуюся в длинной трубке. На движущейся шарик действуют три силы:

где r – радиус шарика;

ρ – плотность материала шарика;

g – ускорение силы тяжести ( ).

2. Сила Архимеда, направленная против движения шарика:

здесь ρ1 – плотность вязкой жидкости.

3. Сила внутреннего трения (сила сопротивления движения шарика). Эта сила также направлена против движения шарика. Стокс на основании теоретических исследований установил, что если шарик движется в жидкости, не вызывая при своем движении никаких завихрений, то сила сопротивления движения шарика определяется формулой

где — скорость падения шарика, r – радиус шарика, η – коэффициент вязкости жидкости.

Следует учесть, что при движении шарика имеет место не трение шарика о жидкость, а трение отдельных слоев жидкости друг о друга, так как шарик обволакивается тонким слоем жидкости, и этот слой жидкости движется вместе с шариком.

Сила трения с увеличением скорости движения шарика возрастает, следовательно, при движении шарика скорость его может достигнуть такой величины, при которой все три силы, действующие на шарик, будут уравновешены, то есть равнодействующая их будет равна нулю. Такое движение шарика будет равномерным, и шарик будет двигаться по инерции с постоянной скоростью. Уравнение динамики для такого движения будет:

При движении шарика в цилиндрическом сосуде с радиусом R и высотой h учет на личия стенок, дна сосуда и верхней поверхности приводит к следующему выражению для коэффициента вязкости, установленному теоретически

здесь R – радиус цилиндра, h – высота жидкости.

Для шариков малых радиусов 1-2 мм и трубок достаточно большого диаметра малая величина. Ею можно в наших расчетах пренебречь и расчеты вести по формуле (53).

Следует помнить, что коэффициент вязкости зависит от температуры. При повышении температуры коэффициент вязкости уменьшается. Поэтому при определении коэффициента вязкости следует указать температуру.

Порядок выполнения работы

1. Получив у лаборанта микрометр и несколько стальных и чугунных шариков, определить диаметры шариков при помощи микрометра с точностью до 0,01 мм. Плотность стали принять равной , плотность свинца — , плотность масла —

2. Температуру считать равной комнатной температуре.

3. Измерить расстояние между метками на трубке, в которой должен двигаться шарик.

4. Секундомером определить время прохождения шариком расстояния между красными линиями ab (рис.22).

Глаз следует поместить так, чтобы отсутствовала ошибка на параллакс. Опыт повторяют с двумя-тремя шариками.

5. Скорость определяется из соотношения

6. Данные опыта подставить в формулу (53).

7. Для каждого шарика отдельно измеряют время падения и рассчитывают коэффициент вязкости. Затем определяют

8. Найти относительную и абсолютную ошибки измерения.

Определение коэффициента вязкости прозрачной жидкости по методу Стокса

Главная > Лабораторная работа >Физика

Лабораторная работа № 2

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ПРОЗРАЧНОЙ ЖИДКОСТИ ПО МЕТОДУ СТОКСА

Цель работы: ознакомиться с методом определения коэффициента вязкости прозрачной жидкости методом движущегося в жидкости шарика.

Оборудование: стеклянный цилиндр, с прозрачной жидкостью; секундомер; микрометр; масштабная линейка; шарики из свинца.

Теория вопроса и метод выполнения работы

Явления переноса объединяют группу процессов, связанных с неоднородностями плотности, температуры или скорости упорядоченного перемещения отдельных слоев вещества. К явлениям переноса относятся диффузия, внутреннее трение и теплопроводность.

Явлением внутреннего трения (вязкости) называется появление сил трения между слоями газа или жидкости, движущимся, друг относительно друга, параллельно и с разными по величине скоростями. Слой, движущийся быстрее, действует с ускоряющей силой на более медленно движущийся соседний слой. Силы внутреннего трения, которые возникают при этом, направлены по касательной к поверхности соприкосновения слоев (рис. 1, 2).

Величина силы внутреннего трения между соседними слоями пропорциональна их площади и градиенту скорости , то есть справедливо соотношение, полученное экспериментально Ньютоном

Величина называется коэффициентом внутреннего трения или динамическим коэффициентом вязкости. В СИ измеряется в .

Читать еще:  Запчасти кпп ваз 2107 5 ступка

Входящая в (1) величина показывает, как меняется скорость жидкости в пространстве при перемещении точки наблюдения в направлении, перпендикулярном слоям. Понятие градиента скорости иллюстрируется рис. 1, 2.

Рис. 1. Постоянный градиент скорости

На рисунке 1 показано распределение скоростей слоев жидкости между двумя параллельными пластинами, одна из которых неподвижна, а другая имеет скорость . Подобная ситуация возникает в прослойке смазки между движущимися деталями. В этом случае слои жидкости, непосредственно прилегающие к каждой из пластин, имеют одинаковую с ней скорость. Движущиеся слои частично увлекают за собой соседние. В результате в пространстве между пластинами скорость жидкости меняется по направлению равномерно. Таким образом, здесь

Рис. 2. Переменный градиент скорости

На рисунке 2 показано распределение скоростей жидкости около движущегося в ней вертикально вниз со скоростью шарика.

Предполагается, что скорость мала, так что завихрения в жидкости не образуются. В этом случае жидкость, непосредственно прилегающая к поверхности шарика, имеет скорость . В это движение частично вовлекаются удаленные от шарика слои жидкости. При этом скорость наиболее быстро меняется по направлению вблизи шарика.

Наличие градиента скорости у поверхности тела указывает, что на него действует сила внутреннего трения, зависящая от коэффициента вязкости . Сама величина определяется природой жидкости и обычно существенно зависит от ее температуры.

Сила внутреннего трения и коэффициент вязкости жидкости может быть определен различными методами – по скорости истечения жидкости через калиброванное отверстие, по скорости движения тела в жидкости и т.д. В данной работе для определения используется метод, предложенный Стоксом.

Рассмотрим для примера равномерное движение маленького шарика радиуса в жидкости. Обозначим скорость шарика относительно жидкости через . Распределение скоростей в соседних слоях жидкости, увлекаемых шариком, должно иметь вид, изображенный на рис. 2. В непосредственной близости к поверхности шара эта скорость равна , а по мере удаления уменьшается и практически становится равной нулю на некотором расстоянии от поверхности шара.

Очевидно, чем больше радиус шара, тем большая масса жидкости вовлекается им в движение, и должно быть пропорционально радиусу шарика : . Тогда среднее значение градиента скорости на поверхности шара равно

Поверхность шара , и полная сила трения, испытываемая движущимся шаром, равна

Более подробные расчеты показывают, что для шара , окончательно – формула Стокса.

По формуле Стокса можно, например, определить скорости оседания частиц тумана и дыма. Ею можно пользоваться и для решения обратной задачи – измеряя скорость падения шарика в жидкости, можно определить ее вязкость.

Упавший в жидкость шарик движется равноускоренно, но, по мере того, как растет его скорость, будет возрастать и сила сопротивления жидкости до тех пор, пока сила тяжести шарика в жидкости не сравняется с суммой силы сопротивления и силы трения жидкости движению шарика. После этого движение будет происходить с постоянной скоростью .

При движении шарика слой жидкости, граничащий с его поверхностью, прилипает к шарику и движется со скоростью шарика. Ближайшие смежные слои жидкости также приводятся в движение, но получаемая ими скорость тем меньше, чем дальше они находятся от шарика. Таким образом, при вычислении сопротивления среды следует учитывать трение отдельных слоев жидкости друг о друга, а не трение шарика о жидкость.

Если шарик падает в жидкости, простирающейся безгранично по всем направлениям , не оставляя за собой никаких завихрений (малая скорость падения, маленький шарик), то, как показал Стокс, сила сопротивления равна

где – коэффициент внутреннего трения жидкости; – скорость шарика; – его радиус.

Кроме силы на шарик действует сила тяжести и архимедова сила , равная весу вытесненной шариком жидкости. Для шара

где , – плотность материала шарика и исследуемой жидкости.

Все три силы будут направлены по вертикали: сила тяжести – вниз, подъемная сила и сила сопротивления – вверх. Первое время, после вхождения в жидкость, шарик движется ускоренно. Считая, что к моменту прохождения шариком верхней метки скорость его уже установилась, получим

где – время прохождения шариком расстояния между метками, – расстояние между метками.

Движения шарика возрастает, ускорение уменьшается и, наконец, шарик достигнет такой скорости, при которой ускорение становится равным нулю, тогда

Подставляя в равенство (4) значение величин, получим:

Решая уравнение (5) относительно коэффициента внутреннего трения, получаем расчетную формулу:

Рис. 3. Прибор Стокса

На рисунке 3 представлен прибор, состоящий из широкого стеклянного цилиндра с нанесенными на него двумя кольцевыми горизонтальными метками и ( – расстояние между метками), который наполняется исследуемой жидкостью (касторовое масло, трансформаторное масло, глицерин) так, чтобы уровень жидкости был на 58 см выше верхней метки.

Порядок выполнения работы

Для измерения коэффициента внутреннего трения жидкости, например, масла, берутся очень маленькие шарики. Диаметр этих шариков измеряют микрометром. Время падения шарика – секундомером.

С помощью микрометра измерьте диаметр шарика.

Измерьте время опускания каждого шарика между двумя метками и . Шарик опустите в отверстие воронки и в момент прохождения через верхнюю метку включите секундомер, а в момент прохождения через нижнюю метку его выключите.

Проведите опыт не менее пяти раз.

Измерьте расстояние между метками. Вычислите скорость движения шарика и по формуле (5) найдите значение коэффициента вязкости.

Плотность жидкости и шариков возьмите из таблицы физических величин.

Найдите среднее значение коэффициента вязкости, оценить абсолютную и относительную погрешности измерений.

Ссылка на основную публикацию
Adblock
detector