Autoparts-remix.ru

Автомобильный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Определите с какой скоростью v движется велосипед

Определите с какой скоростью v движется велосипед

1. Колесо делает 120 оборотов за 2 минуты. Какова частота вращения колеса и период вращения?

2. Шарик вращают на нитке длиной 0,5 м так, что он делает за одну секунду 3 оборота. С какой линейной и угловой скоростью движется шарик.

3. Линейная скорость точек вращающегося колеса 20 м/сек. Определите их угловую скорость движения, период и частоту вращения, если диаметр колеса 0,8 метра.

4. Автомобиль движется по дороге со скоростью 72 км/час. Определите, с какой скоростью относительно Земли движется ось его колеса, его нижняя и верхняя точки.

5. Велосипедист движется со скоростью 36 км/час. Определите частоту вращения велосипедного колеса, имеющего диаметр 0,6 метра, период его вращения, угловую и линейную скорости точек колеса относительно оси его вращения.

Краткая теория:

Равномерное движение по окружности интересно тем, что скорость движущейся точки остается постоянной по величине, изменяясь при этом по направлению. Скорость изменения угла вектора скорости относительно оси координат постоянна. То же самое можно сказать относительно радиуса-вектора, проведенного из оси вращения к вращающейся точке. Эта скорость называется угловой скоростью.

Равномерное движение по окружности характеризуется несколькими взаимосвязанными величинами:

Частота вращения. Обычно обозначается латинской буквой «n» или греческой буквой «?». Эта величина говорит о том, сколько оборотов в единицу времени делает тело. Например, сколько оборотов в секунду, или в минуту, или в час и т.д.

Период вращения чаще всего обозначается латинской буквой «T». Это время одного оборота вокруг оси.

Линейная скорость вращения, обозначается обычно латинской буквой «v». Это скорость, с которой тело движется по окружности. Вектор линейной скорости направлен по касательной к окружности вращения. Он перпендикулярен радиусу окружности вращения.

Угловая скорость вращения обычно обозначается греческой буквой «?». Это величина, показывающая, на какой угол поворачивается радиус-вектор (или вектор скорости) за единицу времени. Обычно измеряется в радианах в секунду.

Формулы для решения:

Где N — количество оборотов, t — время, за которое они совершились.

Линейная скорость вращения

Угловая скорость вращения

Алгоритм решения типовой задачи:

1. Кратко записать условие задачи.

2. Изобразить графически движение, нарисовав окружность вращения и обозначив стрелками скорость и направление движения.

3. Ввести систему отсчета, введя начало отсчета времени и выбрав оси координат для движения и скорости. Часто бывает удобно разместить начало системы координат на движущейся точке, направив одну ось вдоль радиуса, тогда вторая ось будет направлена вдоль скорости.

4. Записать необходимые для решения формулы из числа вышеуказанных. Составить из них уравнение или систему уравнений, с помощью которых можно найти неизвестную величину.

5. Решить уравнение или систему в общем виде.

6. Подставить заданные величины в общее решение, вычислить.

7. Записать ответ.

Возможные особенности задач:

В некоторых несложных задачах можно не вводить систему отсчета в явном виде, а действовать сразу по формулам, включающим в себя неизвестную величину.

Примеры решения:


Задача 1.

Колесо делает 120 оборотов за 2 минуты. Какова частота вращения колеса и период вращения?

Решаем по алгоритму.

1. Кратко записываем условие задачи.

2. Изображаем графически движение, нарисовав вращающееся колесо и обозначив стрелкой направление вращения.

3. Систему отсчета в явном виде можно не вводить. В неявном виде она, конечно же присутствует, поскольку мы должны произвести отсчет времени и оборотов.

4. Записываем необходимые для решения формулы.

5. Эти уравнения сразу дают нам результат в общем виде.

6. Подставляем заданные величины в общее решение, вычисляем.

Переводя в систему единиц СИ, получаем: 60 об/мин=1 об/сек, 1/60 мин=1 сек.

7. Записываем ответ.

Ответ: Частота вращения колеса 1 оборот в секунду, период вращения 1 секунда.

Задача 2.

Шарик вращают на нитке длиной 0,5 м так, что он делает за одну секунду 3 оборота. С какой линейной и угловой скоростью движется шарик.

1,2. Кратко записываем условие задачи, изображая рядом движение.

3. Вводим систему отсчета, начав отсчет времени в момент нахождения шарика в нижней точке и разместив начало системы координат на шарике, направив одну ось вдоль радиуса, а вторую вдоль скорости.

4. Записываем необходимые для решения формулы.

5. Записанные формулы сразу дают решение в общем виде.

6. Подставляем заданные величины в общее решение, вычисляем.

7. Записываем ответ.

Ответ: Скорость движения шарика по окружности 9,42 м/сек, угловая скорость — 18,84 рад/сек.

Задача 3.

Линейная скорость точек вращающегося колеса 20 м/сек. Определите их угловую скорость движения, период и частоту вращения, если диаметр колеса 0,8 метра.

Решаем по алгоритму.

1. Кратко записываем условие задачи. 2. Изображаем графически движение колеса, обозначаем стрелками скорость и направление вращения.

3. Вводим систему отсчета, связав начало отсчета времени и ноль координат с нижней точкой колеса, направив одну ось вдоль радиуса, тогда вторая ось будет направлена вдоль скорости.

4. Записываем необходимые для решения формулы.

5. Решаем эти уравнения в общем виде.

6. Подставляем заданные величины, вычисляем.

7. Записываем ответ.

Ответ: Угловая скорость движения точек колеса 50 радиан в секунду, частота вращения 80 оборотов в секунду, период вращения 125 десятитысячных секунды.

Задача 4.

Автомобиль движется по дороге со скоростью 72 км/час. Определите, с какой скоростью относительно Земли движется ось его колеса, его нижняя и верхняя точки.

Решаем по алгоритму.

1. Кратко записываем условие задачи.

2. Изображаем графически движение, нарисовав колесо, обозначив его ось, верхнюю и нижнюю точки и указав стрелками скорость и направление движения.

3. Вводим систему отсчета, связанную с землей. Начало отсчета помещаем в нижнюю точку.

4. Представим себе характер движения. Сразу можно сказать, что скорость нижней точки относительно земли равна нулю. Мысленно зафиксируем начало координат, помещенное в эту точку. Каково движение остальных точек? При каком движении движутся все точки тела, кроме одной? Это вращение вокруг фиксированной точки. Получается, что в каждое мгновение времени колесо вращается вокруг точки его соприкосновения с землей. В следующее мгновение эта точка меняется, но вокруг нее опять происходит вращение. Можно представить себе вращение колеса вокруг мгновенной оси вращения, проходящей через точку касания земли.

Записываем необходимые для решения формулы. Требуется всего одна.

Из нее следуют два уравнения:

Под «омегой» здесь понимается угловая скорость мгновенного вращения диаметра колеса вокруг мгновенной оси вращения.

5. Решаем эти уравнения в общем виде и получаем соотношение скоростей:

Делим второе уравнение на первое, получаем:

6. Подставляем заданные величины в общее решение.

Скорость оси равна скорости автомобиля, так как она связана с ним, то есть 72 км/час.

7. Записываем ответ.

Ответ: Скорость нижней точки относительно земли равна нулю, скорость оси равна 72 км/час, скорость верхней точки колеса равна 144 км/час.

Задача 5.

Велосипедист движется со скоростью 36 км/час. Определите частоту вращения велосипедного колеса, имеющего диаметр 0,6 метра, период его вращения, угловую и линейную скорости точек колеса относительно оси его вращения.

Решаем по алгоритму.

1. Кратко записываем условие задачи.

2. Изображаем графически движение, нарисовав окружность вращения и обозначив стрелками скорость и направление движения.

3. Введем систему отсчета. Выберем среди равноправных точек колеса ту, которая в момент начала отсчета времени касалась земли. Начало оси координат поместим в точку их первого (по нашему отсчету) соприкосновения.

4. Запишем необходимые для решения формулы, для чего сначала проанализируем движение велосипеда и движение точек колеса. В этом движении колесо прокатится на один оборот и замеченная нами точка вновь окажется внизу, а ось опять точно над ней. Но время одного оборота — это же период вращения колеса! То есть время, за которое будет пройден путь, равный длине окружности колеса — это период его вращения. Это время легко найти, зная путь и скорость.

Обозначим длину окружности колеса через «s», время прохождения этого пути через «t», искомый период вращения через «T». Выше мы выяснили, что

Если мы знаем период и радиус колеса, то легко найти все остальное из следующих уравнений.

5. Решаем уравнения в общем виде.

6. Подставляем заданные значения, вычисляем. Величины должны быть измерены в одних единицах. Переводим километры в час в метры в секунду. В одном километре 1000 метров, а в одном часе 3600 секунд.

7. Записываем ответ.

Ответ: Период обращения колеса велосипеда 19 сотых секунды, частота вращения 5,25 оборота в секунду, угловая скорость 33,3 радиана в секунду, линейная скорость точек колеса 10 метров в секунду.

Читать еще:  Как переделать прицеп для легкового автомобиля?

Определите с какой скоростью v движется велосипед

1. Колесо делает 120 оборотов за 2 минуты. Какова частота вращения колеса и период вращения?

2. Шарик вращают на нитке длиной 0,5 м так, что он делает за одну секунду 3 оборота. С какой линейной и угловой скоростью движется шарик.

3. Линейная скорость точек вращающегося колеса 20 м/сек. Определите их угловую скорость движения, период и частоту вращения, если диаметр колеса 0,8 метра.

4. Автомобиль движется по дороге со скоростью 72 км/час. Определите, с какой скоростью относительно Земли движется ось его колеса, его нижняя и верхняя точки.

5. Велосипедист движется со скоростью 36 км/час. Определите частоту вращения велосипедного колеса, имеющего диаметр 0,6 метра, период его вращения, угловую и линейную скорости точек колеса относительно оси его вращения.

Краткая теория:

Равномерное движение по окружности интересно тем, что скорость движущейся точки остается постоянной по величине, изменяясь при этом по направлению. Скорость изменения угла вектора скорости относительно оси координат постоянна. То же самое можно сказать относительно радиуса-вектора, проведенного из оси вращения к вращающейся точке. Эта скорость называется угловой скоростью.

Равномерное движение по окружности характеризуется несколькими взаимосвязанными величинами:

Частота вращения. Обычно обозначается латинской буквой «n» или греческой буквой «?». Эта величина говорит о том, сколько оборотов в единицу времени делает тело. Например, сколько оборотов в секунду, или в минуту, или в час и т.д.

Период вращения чаще всего обозначается латинской буквой «T». Это время одного оборота вокруг оси.

Линейная скорость вращения, обозначается обычно латинской буквой «v». Это скорость, с которой тело движется по окружности. Вектор линейной скорости направлен по касательной к окружности вращения. Он перпендикулярен радиусу окружности вращения.

Угловая скорость вращения обычно обозначается греческой буквой «?». Это величина, показывающая, на какой угол поворачивается радиус-вектор (или вектор скорости) за единицу времени. Обычно измеряется в радианах в секунду.

Формулы для решения:

Где N — количество оборотов, t — время, за которое они совершились.

Линейная скорость вращения

Угловая скорость вращения

Алгоритм решения типовой задачи:

1. Кратко записать условие задачи.

2. Изобразить графически движение, нарисовав окружность вращения и обозначив стрелками скорость и направление движения.

3. Ввести систему отсчета, введя начало отсчета времени и выбрав оси координат для движения и скорости. Часто бывает удобно разместить начало системы координат на движущейся точке, направив одну ось вдоль радиуса, тогда вторая ось будет направлена вдоль скорости.

4. Записать необходимые для решения формулы из числа вышеуказанных. Составить из них уравнение или систему уравнений, с помощью которых можно найти неизвестную величину.

5. Решить уравнение или систему в общем виде.

6. Подставить заданные величины в общее решение, вычислить.

7. Записать ответ.

Возможные особенности задач:

В некоторых несложных задачах можно не вводить систему отсчета в явном виде, а действовать сразу по формулам, включающим в себя неизвестную величину.

Примеры решения:


Задача 1.

Колесо делает 120 оборотов за 2 минуты. Какова частота вращения колеса и период вращения?

Решаем по алгоритму.

1. Кратко записываем условие задачи.

2. Изображаем графически движение, нарисовав вращающееся колесо и обозначив стрелкой направление вращения.

3. Систему отсчета в явном виде можно не вводить. В неявном виде она, конечно же присутствует, поскольку мы должны произвести отсчет времени и оборотов.

4. Записываем необходимые для решения формулы.

5. Эти уравнения сразу дают нам результат в общем виде.

6. Подставляем заданные величины в общее решение, вычисляем.

Переводя в систему единиц СИ, получаем: 60 об/мин=1 об/сек, 1/60 мин=1 сек.

7. Записываем ответ.

Ответ: Частота вращения колеса 1 оборот в секунду, период вращения 1 секунда.

Задача 2.

Шарик вращают на нитке длиной 0,5 м так, что он делает за одну секунду 3 оборота. С какой линейной и угловой скоростью движется шарик.

1,2. Кратко записываем условие задачи, изображая рядом движение.

3. Вводим систему отсчета, начав отсчет времени в момент нахождения шарика в нижней точке и разместив начало системы координат на шарике, направив одну ось вдоль радиуса, а вторую вдоль скорости.

4. Записываем необходимые для решения формулы.

5. Записанные формулы сразу дают решение в общем виде.

6. Подставляем заданные величины в общее решение, вычисляем.

7. Записываем ответ.

Ответ: Скорость движения шарика по окружности 9,42 м/сек, угловая скорость — 18,84 рад/сек.

Задача 3.

Линейная скорость точек вращающегося колеса 20 м/сек. Определите их угловую скорость движения, период и частоту вращения, если диаметр колеса 0,8 метра.

Решаем по алгоритму.

1. Кратко записываем условие задачи. 2. Изображаем графически движение колеса, обозначаем стрелками скорость и направление вращения.

3. Вводим систему отсчета, связав начало отсчета времени и ноль координат с нижней точкой колеса, направив одну ось вдоль радиуса, тогда вторая ось будет направлена вдоль скорости.

4. Записываем необходимые для решения формулы.

5. Решаем эти уравнения в общем виде.

6. Подставляем заданные величины, вычисляем.

7. Записываем ответ.

Ответ: Угловая скорость движения точек колеса 50 радиан в секунду, частота вращения 80 оборотов в секунду, период вращения 125 десятитысячных секунды.

Задача 4.

Автомобиль движется по дороге со скоростью 72 км/час. Определите, с какой скоростью относительно Земли движется ось его колеса, его нижняя и верхняя точки.

Решаем по алгоритму.

1. Кратко записываем условие задачи.

2. Изображаем графически движение, нарисовав колесо, обозначив его ось, верхнюю и нижнюю точки и указав стрелками скорость и направление движения.

3. Вводим систему отсчета, связанную с землей. Начало отсчета помещаем в нижнюю точку.

4. Представим себе характер движения. Сразу можно сказать, что скорость нижней точки относительно земли равна нулю. Мысленно зафиксируем начало координат, помещенное в эту точку. Каково движение остальных точек? При каком движении движутся все точки тела, кроме одной? Это вращение вокруг фиксированной точки. Получается, что в каждое мгновение времени колесо вращается вокруг точки его соприкосновения с землей. В следующее мгновение эта точка меняется, но вокруг нее опять происходит вращение. Можно представить себе вращение колеса вокруг мгновенной оси вращения, проходящей через точку касания земли.

Записываем необходимые для решения формулы. Требуется всего одна.

Из нее следуют два уравнения:

Под «омегой» здесь понимается угловая скорость мгновенного вращения диаметра колеса вокруг мгновенной оси вращения.

5. Решаем эти уравнения в общем виде и получаем соотношение скоростей:

Делим второе уравнение на первое, получаем:

6. Подставляем заданные величины в общее решение.

Скорость оси равна скорости автомобиля, так как она связана с ним, то есть 72 км/час.

7. Записываем ответ.

Ответ: Скорость нижней точки относительно земли равна нулю, скорость оси равна 72 км/час, скорость верхней точки колеса равна 144 км/час.

Задача 5.

Велосипедист движется со скоростью 36 км/час. Определите частоту вращения велосипедного колеса, имеющего диаметр 0,6 метра, период его вращения, угловую и линейную скорости точек колеса относительно оси его вращения.

Решаем по алгоритму.

1. Кратко записываем условие задачи.

2. Изображаем графически движение, нарисовав окружность вращения и обозначив стрелками скорость и направление движения.

3. Введем систему отсчета. Выберем среди равноправных точек колеса ту, которая в момент начала отсчета времени касалась земли. Начало оси координат поместим в точку их первого (по нашему отсчету) соприкосновения.

4. Запишем необходимые для решения формулы, для чего сначала проанализируем движение велосипеда и движение точек колеса. В этом движении колесо прокатится на один оборот и замеченная нами точка вновь окажется внизу, а ось опять точно над ней. Но время одного оборота — это же период вращения колеса! То есть время, за которое будет пройден путь, равный длине окружности колеса — это период его вращения. Это время легко найти, зная путь и скорость.

Обозначим длину окружности колеса через «s», время прохождения этого пути через «t», искомый период вращения через «T». Выше мы выяснили, что

Если мы знаем период и радиус колеса, то легко найти все остальное из следующих уравнений.

5. Решаем уравнения в общем виде.

6. Подставляем заданные значения, вычисляем. Величины должны быть измерены в одних единицах. Переводим километры в час в метры в секунду. В одном километре 1000 метров, а в одном часе 3600 секунд.

7. Записываем ответ.

Ответ: Период обращения колеса велосипеда 19 сотых секунды, частота вращения 5,25 оборота в секунду, угловая скорость 33,3 радиана в секунду, линейная скорость точек колеса 10 метров в секунду.

Читать еще:  Аренда места под рекламу

Определите с какой скоростью v движется велосипед

1. Колесо делает 120 оборотов за 2 минуты. Какова частота вращения колеса и период вращения?

2. Шарик вращают на нитке длиной 0,5 м так, что он делает за одну секунду 3 оборота. С какой линейной и угловой скоростью движется шарик.

3. Линейная скорость точек вращающегося колеса 20 м/сек. Определите их угловую скорость движения, период и частоту вращения, если диаметр колеса 0,8 метра.

4. Автомобиль движется по дороге со скоростью 72 км/час. Определите, с какой скоростью относительно Земли движется ось его колеса, его нижняя и верхняя точки.

5. Велосипедист движется со скоростью 36 км/час. Определите частоту вращения велосипедного колеса, имеющего диаметр 0,6 метра, период его вращения, угловую и линейную скорости точек колеса относительно оси его вращения.

Краткая теория:

Равномерное движение по окружности интересно тем, что скорость движущейся точки остается постоянной по величине, изменяясь при этом по направлению. Скорость изменения угла вектора скорости относительно оси координат постоянна. То же самое можно сказать относительно радиуса-вектора, проведенного из оси вращения к вращающейся точке. Эта скорость называется угловой скоростью.

Равномерное движение по окружности характеризуется несколькими взаимосвязанными величинами:

Частота вращения. Обычно обозначается латинской буквой «n» или греческой буквой «?». Эта величина говорит о том, сколько оборотов в единицу времени делает тело. Например, сколько оборотов в секунду, или в минуту, или в час и т.д.

Период вращения чаще всего обозначается латинской буквой «T». Это время одного оборота вокруг оси.

Линейная скорость вращения, обозначается обычно латинской буквой «v». Это скорость, с которой тело движется по окружности. Вектор линейной скорости направлен по касательной к окружности вращения. Он перпендикулярен радиусу окружности вращения.

Угловая скорость вращения обычно обозначается греческой буквой «?». Это величина, показывающая, на какой угол поворачивается радиус-вектор (или вектор скорости) за единицу времени. Обычно измеряется в радианах в секунду.

Формулы для решения:

Где N — количество оборотов, t — время, за которое они совершились.

Линейная скорость вращения

Угловая скорость вращения

Алгоритм решения типовой задачи:

1. Кратко записать условие задачи.

2. Изобразить графически движение, нарисовав окружность вращения и обозначив стрелками скорость и направление движения.

3. Ввести систему отсчета, введя начало отсчета времени и выбрав оси координат для движения и скорости. Часто бывает удобно разместить начало системы координат на движущейся точке, направив одну ось вдоль радиуса, тогда вторая ось будет направлена вдоль скорости.

4. Записать необходимые для решения формулы из числа вышеуказанных. Составить из них уравнение или систему уравнений, с помощью которых можно найти неизвестную величину.

5. Решить уравнение или систему в общем виде.

6. Подставить заданные величины в общее решение, вычислить.

7. Записать ответ.

Возможные особенности задач:

В некоторых несложных задачах можно не вводить систему отсчета в явном виде, а действовать сразу по формулам, включающим в себя неизвестную величину.

Примеры решения:


Задача 1.

Колесо делает 120 оборотов за 2 минуты. Какова частота вращения колеса и период вращения?

Решаем по алгоритму.

1. Кратко записываем условие задачи.

2. Изображаем графически движение, нарисовав вращающееся колесо и обозначив стрелкой направление вращения.

3. Систему отсчета в явном виде можно не вводить. В неявном виде она, конечно же присутствует, поскольку мы должны произвести отсчет времени и оборотов.

4. Записываем необходимые для решения формулы.

5. Эти уравнения сразу дают нам результат в общем виде.

6. Подставляем заданные величины в общее решение, вычисляем.

Переводя в систему единиц СИ, получаем: 60 об/мин=1 об/сек, 1/60 мин=1 сек.

7. Записываем ответ.

Ответ: Частота вращения колеса 1 оборот в секунду, период вращения 1 секунда.

Задача 2.

Шарик вращают на нитке длиной 0,5 м так, что он делает за одну секунду 3 оборота. С какой линейной и угловой скоростью движется шарик.

1,2. Кратко записываем условие задачи, изображая рядом движение.

3. Вводим систему отсчета, начав отсчет времени в момент нахождения шарика в нижней точке и разместив начало системы координат на шарике, направив одну ось вдоль радиуса, а вторую вдоль скорости.

4. Записываем необходимые для решения формулы.

5. Записанные формулы сразу дают решение в общем виде.

6. Подставляем заданные величины в общее решение, вычисляем.

7. Записываем ответ.

Ответ: Скорость движения шарика по окружности 9,42 м/сек, угловая скорость — 18,84 рад/сек.

Задача 3.

Линейная скорость точек вращающегося колеса 20 м/сек. Определите их угловую скорость движения, период и частоту вращения, если диаметр колеса 0,8 метра.

Решаем по алгоритму.

1. Кратко записываем условие задачи. 2. Изображаем графически движение колеса, обозначаем стрелками скорость и направление вращения.

3. Вводим систему отсчета, связав начало отсчета времени и ноль координат с нижней точкой колеса, направив одну ось вдоль радиуса, тогда вторая ось будет направлена вдоль скорости.

4. Записываем необходимые для решения формулы.

5. Решаем эти уравнения в общем виде.

6. Подставляем заданные величины, вычисляем.

7. Записываем ответ.

Ответ: Угловая скорость движения точек колеса 50 радиан в секунду, частота вращения 80 оборотов в секунду, период вращения 125 десятитысячных секунды.

Задача 4.

Автомобиль движется по дороге со скоростью 72 км/час. Определите, с какой скоростью относительно Земли движется ось его колеса, его нижняя и верхняя точки.

Решаем по алгоритму.

1. Кратко записываем условие задачи.

2. Изображаем графически движение, нарисовав колесо, обозначив его ось, верхнюю и нижнюю точки и указав стрелками скорость и направление движения.

3. Вводим систему отсчета, связанную с землей. Начало отсчета помещаем в нижнюю точку.

4. Представим себе характер движения. Сразу можно сказать, что скорость нижней точки относительно земли равна нулю. Мысленно зафиксируем начало координат, помещенное в эту точку. Каково движение остальных точек? При каком движении движутся все точки тела, кроме одной? Это вращение вокруг фиксированной точки. Получается, что в каждое мгновение времени колесо вращается вокруг точки его соприкосновения с землей. В следующее мгновение эта точка меняется, но вокруг нее опять происходит вращение. Можно представить себе вращение колеса вокруг мгновенной оси вращения, проходящей через точку касания земли.

Записываем необходимые для решения формулы. Требуется всего одна.

Из нее следуют два уравнения:

Под «омегой» здесь понимается угловая скорость мгновенного вращения диаметра колеса вокруг мгновенной оси вращения.

5. Решаем эти уравнения в общем виде и получаем соотношение скоростей:

Делим второе уравнение на первое, получаем:

6. Подставляем заданные величины в общее решение.

Скорость оси равна скорости автомобиля, так как она связана с ним, то есть 72 км/час.

7. Записываем ответ.

Ответ: Скорость нижней точки относительно земли равна нулю, скорость оси равна 72 км/час, скорость верхней точки колеса равна 144 км/час.

Задача 5.

Велосипедист движется со скоростью 36 км/час. Определите частоту вращения велосипедного колеса, имеющего диаметр 0,6 метра, период его вращения, угловую и линейную скорости точек колеса относительно оси его вращения.

Решаем по алгоритму.

1. Кратко записываем условие задачи.

2. Изображаем графически движение, нарисовав окружность вращения и обозначив стрелками скорость и направление движения.

3. Введем систему отсчета. Выберем среди равноправных точек колеса ту, которая в момент начала отсчета времени касалась земли. Начало оси координат поместим в точку их первого (по нашему отсчету) соприкосновения.

4. Запишем необходимые для решения формулы, для чего сначала проанализируем движение велосипеда и движение точек колеса. В этом движении колесо прокатится на один оборот и замеченная нами точка вновь окажется внизу, а ось опять точно над ней. Но время одного оборота — это же период вращения колеса! То есть время, за которое будет пройден путь, равный длине окружности колеса — это период его вращения. Это время легко найти, зная путь и скорость.

Обозначим длину окружности колеса через «s», время прохождения этого пути через «t», искомый период вращения через «T». Выше мы выяснили, что

Если мы знаем период и радиус колеса, то легко найти все остальное из следующих уравнений.

5. Решаем уравнения в общем виде.

6. Подставляем заданные значения, вычисляем. Величины должны быть измерены в одних единицах. Переводим километры в час в метры в секунду. В одном километре 1000 метров, а в одном часе 3600 секунд.

7. Записываем ответ.

Ответ: Период обращения колеса велосипеда 19 сотых секунды, частота вращения 5,25 оборота в секунду, угловая скорость 33,3 радиана в секунду, линейная скорость точек колеса 10 метров в секунду.

Читать еще:  Как снять бардачок на ауди 80 б3

Определите с какой скоростью v движется велосипед

1. Колесо делает 120 оборотов за 2 минуты. Какова частота вращения колеса и период вращения?

2. Шарик вращают на нитке длиной 0,5 м так, что он делает за одну секунду 3 оборота. С какой линейной и угловой скоростью движется шарик.

3. Линейная скорость точек вращающегося колеса 20 м/сек. Определите их угловую скорость движения, период и частоту вращения, если диаметр колеса 0,8 метра.

4. Автомобиль движется по дороге со скоростью 72 км/час. Определите, с какой скоростью относительно Земли движется ось его колеса, его нижняя и верхняя точки.

5. Велосипедист движется со скоростью 36 км/час. Определите частоту вращения велосипедного колеса, имеющего диаметр 0,6 метра, период его вращения, угловую и линейную скорости точек колеса относительно оси его вращения.

Краткая теория:

Равномерное движение по окружности интересно тем, что скорость движущейся точки остается постоянной по величине, изменяясь при этом по направлению. Скорость изменения угла вектора скорости относительно оси координат постоянна. То же самое можно сказать относительно радиуса-вектора, проведенного из оси вращения к вращающейся точке. Эта скорость называется угловой скоростью.

Равномерное движение по окружности характеризуется несколькими взаимосвязанными величинами:

Частота вращения. Обычно обозначается латинской буквой «n» или греческой буквой «?». Эта величина говорит о том, сколько оборотов в единицу времени делает тело. Например, сколько оборотов в секунду, или в минуту, или в час и т.д.

Период вращения чаще всего обозначается латинской буквой «T». Это время одного оборота вокруг оси.

Линейная скорость вращения, обозначается обычно латинской буквой «v». Это скорость, с которой тело движется по окружности. Вектор линейной скорости направлен по касательной к окружности вращения. Он перпендикулярен радиусу окружности вращения.

Угловая скорость вращения обычно обозначается греческой буквой «?». Это величина, показывающая, на какой угол поворачивается радиус-вектор (или вектор скорости) за единицу времени. Обычно измеряется в радианах в секунду.

Формулы для решения:

Где N — количество оборотов, t — время, за которое они совершились.

Линейная скорость вращения

Угловая скорость вращения

Алгоритм решения типовой задачи:

1. Кратко записать условие задачи.

2. Изобразить графически движение, нарисовав окружность вращения и обозначив стрелками скорость и направление движения.

3. Ввести систему отсчета, введя начало отсчета времени и выбрав оси координат для движения и скорости. Часто бывает удобно разместить начало системы координат на движущейся точке, направив одну ось вдоль радиуса, тогда вторая ось будет направлена вдоль скорости.

4. Записать необходимые для решения формулы из числа вышеуказанных. Составить из них уравнение или систему уравнений, с помощью которых можно найти неизвестную величину.

5. Решить уравнение или систему в общем виде.

6. Подставить заданные величины в общее решение, вычислить.

7. Записать ответ.

Возможные особенности задач:

В некоторых несложных задачах можно не вводить систему отсчета в явном виде, а действовать сразу по формулам, включающим в себя неизвестную величину.

Примеры решения:


Задача 1.

Колесо делает 120 оборотов за 2 минуты. Какова частота вращения колеса и период вращения?

Решаем по алгоритму.

1. Кратко записываем условие задачи.

2. Изображаем графически движение, нарисовав вращающееся колесо и обозначив стрелкой направление вращения.

3. Систему отсчета в явном виде можно не вводить. В неявном виде она, конечно же присутствует, поскольку мы должны произвести отсчет времени и оборотов.

4. Записываем необходимые для решения формулы.

5. Эти уравнения сразу дают нам результат в общем виде.

6. Подставляем заданные величины в общее решение, вычисляем.

Переводя в систему единиц СИ, получаем: 60 об/мин=1 об/сек, 1/60 мин=1 сек.

7. Записываем ответ.

Ответ: Частота вращения колеса 1 оборот в секунду, период вращения 1 секунда.

Задача 2.

Шарик вращают на нитке длиной 0,5 м так, что он делает за одну секунду 3 оборота. С какой линейной и угловой скоростью движется шарик.

1,2. Кратко записываем условие задачи, изображая рядом движение.

3. Вводим систему отсчета, начав отсчет времени в момент нахождения шарика в нижней точке и разместив начало системы координат на шарике, направив одну ось вдоль радиуса, а вторую вдоль скорости.

4. Записываем необходимые для решения формулы.

5. Записанные формулы сразу дают решение в общем виде.

6. Подставляем заданные величины в общее решение, вычисляем.

7. Записываем ответ.

Ответ: Скорость движения шарика по окружности 9,42 м/сек, угловая скорость — 18,84 рад/сек.

Задача 3.

Линейная скорость точек вращающегося колеса 20 м/сек. Определите их угловую скорость движения, период и частоту вращения, если диаметр колеса 0,8 метра.

Решаем по алгоритму.

1. Кратко записываем условие задачи. 2. Изображаем графически движение колеса, обозначаем стрелками скорость и направление вращения.

3. Вводим систему отсчета, связав начало отсчета времени и ноль координат с нижней точкой колеса, направив одну ось вдоль радиуса, тогда вторая ось будет направлена вдоль скорости.

4. Записываем необходимые для решения формулы.

5. Решаем эти уравнения в общем виде.

6. Подставляем заданные величины, вычисляем.

7. Записываем ответ.

Ответ: Угловая скорость движения точек колеса 50 радиан в секунду, частота вращения 80 оборотов в секунду, период вращения 125 десятитысячных секунды.

Задача 4.

Автомобиль движется по дороге со скоростью 72 км/час. Определите, с какой скоростью относительно Земли движется ось его колеса, его нижняя и верхняя точки.

Решаем по алгоритму.

1. Кратко записываем условие задачи.

2. Изображаем графически движение, нарисовав колесо, обозначив его ось, верхнюю и нижнюю точки и указав стрелками скорость и направление движения.

3. Вводим систему отсчета, связанную с землей. Начало отсчета помещаем в нижнюю точку.

4. Представим себе характер движения. Сразу можно сказать, что скорость нижней точки относительно земли равна нулю. Мысленно зафиксируем начало координат, помещенное в эту точку. Каково движение остальных точек? При каком движении движутся все точки тела, кроме одной? Это вращение вокруг фиксированной точки. Получается, что в каждое мгновение времени колесо вращается вокруг точки его соприкосновения с землей. В следующее мгновение эта точка меняется, но вокруг нее опять происходит вращение. Можно представить себе вращение колеса вокруг мгновенной оси вращения, проходящей через точку касания земли.

Записываем необходимые для решения формулы. Требуется всего одна.

Из нее следуют два уравнения:

Под «омегой» здесь понимается угловая скорость мгновенного вращения диаметра колеса вокруг мгновенной оси вращения.

5. Решаем эти уравнения в общем виде и получаем соотношение скоростей:

Делим второе уравнение на первое, получаем:

6. Подставляем заданные величины в общее решение.

Скорость оси равна скорости автомобиля, так как она связана с ним, то есть 72 км/час.

7. Записываем ответ.

Ответ: Скорость нижней точки относительно земли равна нулю, скорость оси равна 72 км/час, скорость верхней точки колеса равна 144 км/час.

Задача 5.

Велосипедист движется со скоростью 36 км/час. Определите частоту вращения велосипедного колеса, имеющего диаметр 0,6 метра, период его вращения, угловую и линейную скорости точек колеса относительно оси его вращения.

Решаем по алгоритму.

1. Кратко записываем условие задачи.

2. Изображаем графически движение, нарисовав окружность вращения и обозначив стрелками скорость и направление движения.

3. Введем систему отсчета. Выберем среди равноправных точек колеса ту, которая в момент начала отсчета времени касалась земли. Начало оси координат поместим в точку их первого (по нашему отсчету) соприкосновения.

4. Запишем необходимые для решения формулы, для чего сначала проанализируем движение велосипеда и движение точек колеса. В этом движении колесо прокатится на один оборот и замеченная нами точка вновь окажется внизу, а ось опять точно над ней. Но время одного оборота — это же период вращения колеса! То есть время, за которое будет пройден путь, равный длине окружности колеса — это период его вращения. Это время легко найти, зная путь и скорость.

Обозначим длину окружности колеса через «s», время прохождения этого пути через «t», искомый период вращения через «T». Выше мы выяснили, что

Если мы знаем период и радиус колеса, то легко найти все остальное из следующих уравнений.

5. Решаем уравнения в общем виде.

6. Подставляем заданные значения, вычисляем. Величины должны быть измерены в одних единицах. Переводим километры в час в метры в секунду. В одном километре 1000 метров, а в одном часе 3600 секунд.

7. Записываем ответ.

Ответ: Период обращения колеса велосипеда 19 сотых секунды, частота вращения 5,25 оборота в секунду, угловая скорость 33,3 радиана в секунду, линейная скорость точек колеса 10 метров в секунду.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector